Journal of Organometallic Chemistry, 92 (1975) 1–6 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

VERFEINERUNG DER KRISTALLSTRUKTUR VON DICYCLOPENTA-DIENYLMAGNESIUM, (η^{5} -C₅H₅)₂Mg

WOLFGANG BÜNDER und ERWIN WEISS*

Institut für Anorganische Chemie der Universitat Hamburg, Papendamm 6, D2 Hamburg 13 (Bundesrepublik Deutschland)

(Eingegangen den 21. Dezember 1974)

Summary

The crystal structure of Cp_2Mg has been re-determined. Refined values for Mg-C and C-C distances are 2.304(8) and 1.39(2) Å respectively. In the crystalline state the two parallel rings of Cp_2Mg have a staggered conformation in contrast to the results obtained from electron diffraction in the gaseous phase. Metal-carbon distances of various Cp_2M compounds are compared with respect to the bond character.

Zusammenfassung

Die Kristallstruktur von Cp₂Mg wurde erneut bestimmt. Die verleinerten Werte der Mg—C- und C—C-Abstände betragen 2.304(8) bzw. 1.39(2) Å. Im Kristall sind die beiden parallelen Ringe von Cp₂Mg antiprismatisch ("auf Lücke") angeordnet, im Gegensatz zu den Ergebnissen von Elektronenbeugungsuntersuchungen in der Gasphase. Die Metall—C-Abstände verschiedener Cp₂M-Verbindungen werden im Hinblick auf den Bindungscharakter miteinander verglichen.

Einleitung

Bereits kurz nach der ersten Synthese [1,2] von Cp_2Mg ($Cp = C_5H_5$) wurde dessen charakteristische Molekülgestalt durch einen röntgenographischen Vergleich [3] mit Cp_2Fe bewiesen. Demzufolge hat Cp_2Mg die Struktur eines pentagonalen Antiprismas, d.h. die beiden parallelen Cp-Ringe stehen "auf Lücke" (staggered conformation). Eine genauere röntgenographische Bestimmung der Bindungsabstände war bisher noch nicht erfolgt. Sie ist u.a. von Interesse in Zusammenhang mit dem Charakter der Metall-Ring-Bindung.

Der anlsotrop Die Temperat	ie Temperaturfaki urfaktoren der Wi	lor ist definiert d asserstoffatome	urch exp(µ ₁₁ h ² . wurden nicht ants	—1322/12 ² —1333/ ² —21, otrop verfeinert.	$y_{12}hk - 2\mu_{13}hl - 2h_{20}$ sondern mit $h = 1$	<i>ו ארפין).</i> 1.0 א ²] אטזנות	ıt gehalten.		
Atum		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	β ₁₁ × 10 ⁴	μ ₂₂ × 10 ⁴	⁴ 01× ور ^ا	µ12 × 10 ⁴	β _{1,3} × 10 ⁴	}23 × 10 ⁴
Mĸ	0.0	00	0.0	62(2)	16(1)	16(1)	-3(1)	18(1)	(1) 1
cu	0.027(2)	0 226(1)	0.456(1)	168(7)	11(2)	23(2)	-5(3)	14(3)	-2(1)
C(2)	0.213(1)	0.307(1)	0.441(1)	89(E)	23(2)	19(2)	0(3)	22(2)	-3(2)
C(3)	0.076(2)	0.408(1)	0.326(1)	121(6)	23(2)	20(2)	12(3)	37(3)	5(2)
C(4)	0.185(1)	0.304(1)	0.269(1)	76(0)	26(2)	17(2)	3(3)	9(2)	8(2)
C(6)	-0.226(1)	0 278(1)	0 351(1)	8-1(5)	31(2)	38(2)	20(3)	41(3)	-23(2)
(1)11	0.103(4)	0.176(3)	0.631(2)						
11(2)	0.439(4)	0.285(3)	0.520(2)						
11(3)	0.167(4)	0.402(3)	0.303(2)						
(1)(1)	-0.374(4)	0.435(3)	0.167(2)						
11(5)	-0.420(4)	0.242(3)	0.311(2)						

.

ATOMPARAMETER UND ANISOTROPE TEMPERATURFAKTOREN VON CD2M5

TABELLE 1

2

Strukturbestimmung

Durch Sublimation sowie Kristallisation aus Äther gewonnene Einkristalle (ca. 0.3 mm Durchmesser) wurden unter N₂-Schutz in abgeschmolzenen Kapillaren mit Zr-gefilterter Mo- K_{α} -Strahlung mit Hilfe eines automatischen Vierkreis-Einkristalldiffraktometers bis zu einem Winkel von $\theta = 25^{\circ}$ vermessen. Auf eine Absorptionskorrektur der 466 unabhängigen Strukturamplituden konnte wegen des kleinen μR -Wertes verzichtet werden. Zur Sammlung der Daten vgl. [4].

In guter Übereinstimmung mit den früheren Werten [3] ergaben sich folgende Daten: Raumgruppe $P2_1/c$; a = 5.968(3), b = 8.073(3), c = 10.923(4) Å; $\beta = 121.37(9)^\circ$, V = 449.3 Å³, Z = 2. Da die Mg-Atome die Lagen 0,0,0 und $0,\frac{1}{2},\frac{1}{2}$ besetzen, sind somit nur die Parameter der C- und H-Atome zu bestimmen. Dies erfolgte durch dreidimensionale Fouriersynthese und anschliessende LSQ-Verfeinerungsrechnungen [5], zuletzt auch unter Verfeinerung der H-Atomlagen. Dabei resultierten bei einem *R*-Wert von 6.8% (anisotrop) die in Tabelle 1 aufgeführten Atomparameter und Temperaturfaktoren.

Beschreibung der Struktur

Die Ergebnisse bestätigen somit die bereits früher abgeleitete antiprismatische Molekülgestalt, entsprechend der Fig. 1. Cp_2Mg ist isotyp zu Cp_2Fe [6] und Cp_2Co [7].

In einer kürzlich durchgeführten Elektronenbeugungsuntersuchung fan-

Fig. 1. Molekülstruktur von Cp2Mg.

Fig. 2. Kristallstruktur von Cp2Mg. Projektion auf die (100)-Ebene

den Haaland et al. [8], dass im Gaszustand eine prismatische Struktur (eclipsed conformation) wahrscheinlicher als die antiprismatische ist. Insgesamt scheinen die bisher ermittelten Strukturen von Dicyclopentadienylmetallverbindungen den Schluss zuzulassen, dass i.a. im Gaszustand eine prismatische Anordnung [8, 9], im Kristall dagegen eine antiprismatische bevorzugt ist. Eine Umlagerung ist leicht möglich, da die Energieschwelle für die innere Ringrotation sehr klein ist. Cp₂Mg liegt im Festzustand jedoch eindeutig in der antiprismatischen Konfiguration vor, wie auch aus einer durchgeführten Differenzfouriersynthese hervorgeht, in der keine langgestreckten oder aufgespaltenen Elektronendichtemaxima für die C-Atome erkennbar sind.

Im Cp₂Mg sind die Mg–C-Abstände innerhalb der Messgenauigkeit gleich und betragen im Mittel 2.304(8) Å (vgl. Tabelle 2). Auch die Abstände zwischen benachbarten C-Atomen in den Ringen sind gleich mit einem Mittelwert von 1.39(2) Å*. Jeder der aus je 5 C-Atomen bestehenden Ringe ist planar**, die

Dieser Wert erscheint um Vergleich zu sonstigen röntgenographisch ermittelten C-C-Abständen in Metalleyelopentadienylverbindungen geringfügig verkürzt. Es ist dabei aber zu beschten, dass im Verlauf der abschliessenden Verfeinerungsrechnungen eine Verkürzung um 0.02 Å erfolgte, als die H-Atomlagen eigens berücksichtigt wurden. Entsprechendes gilt für die Mg-C-Abstände.

^{**} Die planantät des C₅-Ringes ergibt sich stätistisch aus einem X²-Test (näheres vgl. [10]). Mit der gefunden Standardabweichung $\sigma_{Atom} = 0.005$ Å und einer Irrtumswahrscheinlichkeit $\alpha = 5\%$ ist $\chi^{0}_{Der.} = 1.4 < \chi^{2}_{Test} = 6.0$.

TABELLE 2 INTERATOMARE ABSTANDE IN CP₂Mg

Abstände Mg-C-Atom (A)		Abstande der Atome im Ring (A)			
2.283(7)	C(1)C(2)	1.38(2)	C(1)-H(1)	0.80(5)	
2.300(7)	C(1)C(5)	1.41(1)	C(2)-H(2)	1.18(4)	
2.293(8)	C(2)-C(3)	1.37(1)	C(3)-H(3)	0.84(4)	
2.324(7)	C(3)C(4)	1.35(2)	C(4)-H(4)	1.14(4)	
2.320(9)	C(4)C(5)	1.41(2)	C(5)-H(5)	1.05(5)	
2.304(8)	Mittelwert	1.39(2)	Mittelwert	1.00(4)	
	aus Elektro- nenbeugung in der Gas-		aus Elektro- nenbeugung 10 der Gas-		
2.339(4)	phase [8]	1.423(2)	pbase [8]	1.116(7)	
	2.283(7) 2.300(7) 2.293(8) 2.324(7) 2.320(9) 2.304(8) 2.339(4)	2.283(7) C(1)C(2) 2.300(7) C(1)C(5) 2.293(8) C(2)C(3) 2.324(7) C(3)C(4) 2.320(9) C(4)C(5) 2.304(8) Mutelwert aus Elektro- nenbeugung in der Gas- phase [8]	2.283(7) $C(1)-C(2)$ 1.38(2) 2.300(7) $C(1)-C(5)$ 1.41(1) 2.293(8) $C(2)-C(3)$ 1.37(1) 2.324(7) $C(3)-C(4)$ 1.35(2) 2.320(9) $C(4)-C(5)$ 1.41(2) 2.304(8) Mittelwert 1.39(2) aus Elektro- nenbeugung in der Gas- 2.339(4) phase [8] 1.423(2)	2.283(7) $C(1)-C(2)$ $1.38(2)$ $C(1)-H(1)$ 2.300(7) $C(1)-C(5)$ $1.41(1)$ $C(2)-H(2)$ 2.293(8) $C(2)-C(3)$ $1.37(1)$ $C(3)-H(3)$ 2.324(7) $C(3)-C(4)$ $1.35(2)$ $C(4)-H(4)$ 2.320(9) $C(4)-C(5)$ $1.41(2)$ $C(5)-H(5)$ 2.304(8) Mittelwert $1.39(2)$ Mittelwert aus Elektro- aus Elektro- nenbeugung in der Gas- in der Gas- in der Gas- 2.339(4) phase [8] $1.423(2)$ phase [8]	

C-Atome liegen bis maximal 0.004 Å ausserhalb der "besten Ebene". Auch die H-Atome zeigen keine extremen Abweichungen von den "besten Ebenen" (maximal bis 0.06 Å). Abwinklungen von ca. 3-5° aus der Ebene, wie sie in der Gasphase bei einigen Cyclopentadienylverbindungen wahrscheinlich gemacht wurden [8], sind nach einem x^2 -Test möglich*.

Die beiden C₅-Ringe im Molekül sind parallel im Abstand von 3.96(1) Å. Der Abstand des Mg-Atoms von jeder Ringebene beträgt somit 1.98(1) Å.

In Fig. 2 ist die Kristallstruktur als Projektion auf (100) dargestellt.

Diskussion

Im folgenden soll noch auf den Mg–C-Abstand sowie den Bindungscharakter in Cp₂Mg im Vergleich zu anderen Cyclopentadienylmetall-Verbindungen eingegangen werden.

Es sind bisher nur wenige Daten von Mg–C-Abständen bekannt. Diese können ausserdem nicht direkt miteinander verglichen werden, da verschiedenartige Bindungstypen auftreten.

In Äthylmagnesiumbromid—Äther (1/2), $C_2H_3MgBr \cdot 2(C_2H_5)_2O$ liegt eine gewöhnliche Mg—C- σ -Bindung mit einem Bindungsabstand von 2.15 Å [11] vor. Im hochpolymeren Dimethylmagnesium [12] und Diäthylmagnesium [13] mit Brücken-Alkylgruppen werden grössere Mg—C-Abstände $(2.2_4 \text{ bzw. } 2.2_6 \text{ Å})$ gefunden. Diese Abstandsvergrösserung ist in Übereinstimmung mit der Annahme von Mg—C—Mg-Dreizentrenbindungen**.

In Cp₂Mg schliesslich wird ein noch grösserer Mg—C-Abstand von 2.304(8) Å gefunden. Dabei ist allerdings die völlig andersartige Bindung zu berücksichtigen. Sie liegt zwischen einer ionischen (Cp⁻Mg²⁺Cp⁻) und einer kovalenten π -Bindung vom Typ des Ferrocens.

[•] Bei Einbeziebung der H-Atome ist nach dem X²-Test die Hypothese der Planamtät für alle Ringatome zu verwerfen. Bei $\alpha = 5\%$ ist $\chi^2_{ber} = 54 > \chi^2_{Test} = 14$.

^{**} Vergleichbar damit sind die Verbältrusse im dimeren Trumethylaluminium (CH3)₂Al(CH3)₂Al(CH3)₂. Die Al-C-Abstände zu den brückenständigen Methylgruppen (2.14 A) sind gleichfalls langer als diejenigen zu den endständigen (1.97 A) [14].

M—C-Abst	and (Å)	M-lonetradius (.4) ^b	Differenz (A)
Ca-C ^a	2.80 [17]	0.99	1.81
Mg-C	2.304	065	1.65
Mn-C	2.41 [18]	0.80	1.61
РЬ—С	2.762 [19]	1.21	1.55
Co-C	2.096 [7]	0.74	1.35
Fe—C	2.045 [6]	0.76	1.29

VERGLEICH DER BINDUNGSABSTÄNDE IN DICYCLOPENTADIENYLMETALLVERBINDUNGEN

^a Mittelwert aus beiden η^3 -C₅H₅-Gruppen ^b Werte nach Pauling [15], bei den 1.a. grösseren Werten nach Ladd [16] ergibt sich der gleiche Trend.

Abschliessend werden in Tabelle 3 einige Dicyclopentadienylmetallverbindungen miteinander verglichen. Subtrahiert man vom Metall–C-Abstand jeweils den Ionenradius des betreffenden Metalls, so entspricht die Differenz im Falle ausgesprochen ionischer Verbindungen einem "effektiven Ionenradius" der C-Atome im Cp-Anion.

Der grösste Wert (1.81 Å) wird beim Cp₂Ca erreicht, gefolgt von Cp₂Mg (1.65), Cp₂Mn (1.61) und Cp₂Pb (1.55); diese Verbindungen zeigen noch deutlich salzartiges Verhalten. Davon abgesetzt erscheinen die Verbindungen mit vorwiegend kovalenten Bindungscharakter Cp₂Co (1.35) und Cp₂Fe (1.29).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für Sachbeihilfen. Für die Überlassung von Rechenprogrammen danken wir den Herren Dr. K. Hoffmann, Dr. J. Kopf und J. Schulze (Universität Hamburg) sowie Herrn Dr. G. Huttner (Techn. Universität München).

Literatur

- 1 F.A. Cotton und G. Wilkinson, Chem. Ind., (1954) 307.
- 2 E.O. Fischer und W. Hafner, Z. Naturforsch. B, 9 (1954) 503.
- 3 E. Weiss und E.O. Fischer, 2. Anorg. Allg. Chem , 278 (1955) 219
- 4 K. Hoffmann und E. Weiss, J. Organometal Chem., 50 (1973) 25.
- 5 W.R. Busing, K.O. Martin und H.A. Levy, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962
- 6 J.D. Dunitz, L.E. Orgel und A. Rich, Acta Cryst., 9 (1956) 373.
- 7 W. Bünder und E. Weiss, J. Organometal. Chem., 92 (1975) 7.
- 8 A. Haaland, J. Lusztyc, J. Brunvoll und K.B. Starowieyski, J. Organometal. Chem., im Druck.
- 9 R.K. Bohn und A. Haaland, J. Organometal Chem., 5 (1966) 470.
- 10 G.H Stout und L.H Jensen, X-Ray Structure Determination, London, 1969.
- 11 L.J. Guggenberger und R.E. Rundle, J. Amer. Chem Soc., 90 (1968) 5375.
- 12 E. Weiss, J. Organometal. Chem., 2 (1964) 314.
- 13 E. Weiss, J. Organometal. Chem., 4 (1965) 101.
- 14 R.G. Vranka und E.L. Amma, J. Amer. Chem. Soc., 89 (1967) 3121.
- 15 L. Pauling, Die Natur der chemischen Bindung, Weinheim, 1968.
- 16 M.F.C. Ladd, Theor. Chim. Acta, 12 (1968) 333.
- 17 R. Zerger und G. Stucky, J. Organometal. Chem., 80 (1974) 7
- 18 W. Bünder und E. Weiss, J. Organometal. Chem., in Vorbereitung.
- 19 C Panationi, G. Bombieri und U. Croatto, Acta Cryst., 21 (1966) 823.

TABELLE 3